Abstract:
The behavior as $R\to\infty$ of the Lebesgue constants
$$
L(RW)=\dfrac{1}{4\pi^2}\int^\pi_{-\pi}\int^\pi_{-\pi}\biggl|\sum_{(n,m)\in RW\cap\mathbf Z^2}e^{i(nx+my)}\biggr|\,dx\,dy,
$$
where $RW$ is homothetic to a compact, convex set $W$ is considered.
that
a) for any $p>2$ there exists $W$ for which
$$
C_1(\ln R)^p\leqslant L(RW)\leqslant C_2(\ln R)^p,\quad R\geqslant2;
$$
b) for any $p\in\biggl(0,\dfrac12\biggr)$ and $\alpha>1$ there exists $W$ for which
$$
C_1R^p(\ln R)^{-\alpha p}\leqslant L(RW)\leqslant C_2R^p(\ln R)^{2-2p},\quad R\geqslant2.
$$