RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1979 Volume 86, Pages 11–18 (Mi znsl1817)

This article is cited in 3 papers

Conjugacy of net subgroups of linear groups

Z. I. Borevich, E. V. Dybkova, L. Yu. Kolotilina


Abstract: For the full linear group over a matrix-local ring whose quotient by the Jacobson radical is not the field of two elements, we settle the question of the conjugacy of $D$-net subgroups (Ref. Zh. Mat., 1977, 2A280). Two $D$-net subgroups are conjugate if and only if the $D$-nets defining them are similar (i.e., can be transformed into each other by a permutation matrix). An analogous result is obtained for $D$-net subgroups of the symplectic group over a commutative local ring whose residue field contains more than three elements.

UDC: 519.46


 English version:
Journal of Soviet Mathematics, 1981, 17:4, 1945–1951

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024