RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1979 Volume 86, Pages 34–39 (Mi znsl1820)

This article is cited in 2 papers

Self-normalizing nilpotent subgroups of the full linear group over a finite field

N. A. Vavilov


Abstract: It has been proved (Ref. Zh. Mat., 1977, 4A170) that in the full linear group $GL(n,q)$, $n=2,3$, over a finite field of $q$ elements, $q$ odd or $q=2$, the only self-normalizing nilpotent subgroups are the normalizers of Sylow 2-subgroups and that for even $q>2$ there are no such subgroups. In the present note it is deduced from results of D. A. Suprunenko and R. F. Apatenok (Ref. Zh. Mat., 1960, 13586; 1962, 9A150) that this is true for any $n$.

UDC: 519.46


 English version:
Journal of Soviet Mathematics, 1981, 17:4, 1963–1967

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024