RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1978 Volume 80, Pages 117–124 (Mi znsl1840)

This article is cited in 2 papers

Minimization of the maximum deviation with preemption

N. B. Lebedinskaya


Abstract: We solve the scheduling problem to minimize the maximum deviation of the job completion times from the respective deadlines, with the starting time at an integer point in the interval $[t_1,t_2]$. It is shown that for an arbitrary set of jobs $Z$. the optimal-schedule penalty function $F_Z(t)$ (as a function of the integer argument $t$) is such that $\Delta F_Z(t)= \begin{cases} -1, & t\in(-\infty,a(Z)-1],\\ 0, & t\in[a(Z),b(Z)-1],\\ +1, & t\in[b(Z),+\infty) \end{cases}$ for some integer $a(Z)\leqslant b(Z)$. If $a(Z)$ and $b(Z)$ coincide, the function $\Delta F_Z(t)$ has no zero values. An optimal scheduling algorithm is proposed which requires $C\cdot K\bigl(\max_i\{D_i\}-\min_i\{d_i\}+\sum_1^kV_i\bigr)$ computer operations.

UDC: 681.3.06.51


 English version:
Journal of Soviet Mathematics, 1985, 28:3, 354–359

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025