Abstract:
One considers the one-dimensional Dirac operator with a slowly oscillating potential
\begin{equation}
H=\begin{pmatrix}
0 & 1\\
-1 &0
\end{pmatrix}\dfrac{d}{dx}+q\begin{pmatrix}
\cos Z(x) & \sin Z(x)\\
\sin Z(x) & -\cos Z(x)\end{pmatrix},\quad
x\in(-\infty,\infty),\quad q-\mathrm{const},
\end{equation}
where $Z(x)\in C^1(\mathbf R^1)$ and $Z(x)\underset{x\to\pm\infty}\to C\pm|x|^\alpha$, $0<\alpha<1$, $C\pm-\mathrm{const}$. The following statement holds. The double absolutely continuous spectrum of the operator (1) fills the intervals $(-\inftu,-|q|)$, $(|q|,\infty)$. The interval $(-|q|,|q|)$ is free from spectrum. The operator has a simple eigenvalue only for $\operatorname{sign}C_+=\operatorname{sign}C_-$, situated either at the point (under the condition $C_+>0$) or at the point $\lambda=-|q|$ (under the condition). The proof is based on the investigation of the coordinate asytnptotics of the corresponding equation.