RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1976 Volume 64, Pages 69–79 (Mi znsl1873)

This article is cited in 1 paper

Series $\sum F(m)q^m$, where $F(m)$ is the number of odd classes of binary quadratic forms of determinant $-m$

E. P. Golubeva, O. M. Fomenko


Abstract: Consideration of the analytic continuation of the Eisenstein series of weight $3/2$ for the group $\Gamma_0(4)$ leads to a new proof of Mordell's formula connecting the values $\chi(\omega)=\sum^\infty_{m=1}F(m)e^{\pi im\omega}$, $\operatorname{Im}\omega>0$, and $\chi(-\frac{1}{\omega})$. The behavior of the function $\chi(\omega)$for $\Gamma_0(4)$is examined by the same method.

UDC: 511.334


 English version:
Journal of Soviet Mathematics, 1981, 17:2, 1759–1766

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024