RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1976 Volume 58, Pages 80–92 (Mi znsl1890)

This article is cited in 1 paper

Eigenvalue problem for an irregular $\lambda$-matrix

V. N. Kublanovskaya, V. B. Mikhailov, V. B. Khazanov


Abstract: The solution of the eigenvalue problem is examined for the polynomial $D(\lambda)=A_0\lambda^2+A_1\lambda+A_2$ when the matrices $A_0$ and $A_2$ (or one of them) are singular. A normalized process is used for solving the problem, permitting the determination of linearly independent eigenvectors corresponding to the zero eigenvalue of matrix $D(\lambda)$ and to the zero eigenvalue of matrix $A_0$. The computation of the other eigenvalues of $D(\lambda)$ is reduced to the same problem for a constant matrix of lower dimension. An ALGOL program and test examples are presented.

UDC: 518.512.86


 English version:
Journal of Soviet Mathematics, 1980, 13:2, 251–260

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025