This article is cited in
5 papers
The behavior of Riesz means of the coefficients of a symmetric square $L$-function
O. M. Fomenko St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
Let
$f(z)$ be a holomorphic Hecke eigencuspform of even weight
$k$ with respect to
$SL(2,\mathbb Z)$ and let $L(s,\mathrm{sym}^2f)=\sum_{n=1}^\infty c_nn^{-s}$,
$\operatorname{Re}s>1$, be the symmetric square
$L$-function associated with
$f$. Represent the Riesz mean
$(\rho\ge 0)$
$$
\frac1{\Gamma(\rho+1)}\sum_{n\le x}'(x-n)^\rho c_n=:D_{\rho}(x;\mathrm{sym}^2 f)
$$
as the sum of the “residue function”
$\Gamma(\rho+1)^{-1}L(0,\mathrm{sym}^2f)x^\rho$ and the “error term”
$$
D_\rho(x;\mathrm{sym}^2f)=\frac{L(0,\mathrm{sym}^2f)}{\Gamma(\rho+1)}x^\rho+\Delta_\rho(x;\mathrm{sym}^2f).
$$
Using the Voronoi formula for
$\Delta_\rho(x;\mathrm{sym}^2f)$, obtained earlier (see Zap. Nauchn. Semin. POMI. 314, 247–256 (2004)), the integral
$$
\int_1^X\Delta_\rho{(x;\mathrm{sym}^2f)}^2\,dx,
$$
is estimated. In this way, an asymptotics for
$0<\rho\leqslant1$ and an upper bound for
$\rho=0$ are obtained. Also the existence of a limiting distribution for the function
$$
x^{-\frac23\rho-\frac13}\Delta_\rho(x;\mathrm{sym}^2f), \quad 0<\rho\leqslant1,
$$
and, as a corollary, for the function
$$
x^{-\frac23\rho-\frac13}D_{\rho}(x;\mathrm{sym}^2f), \quad 0<\rho<1.
$$
is established. Bibliography: 12 titles.
UDC:
511.466, 517.863
Received: 08.09.2006