RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1977 Volume 73, Pages 24–34 (Mi znsl1942)

Continuity of perturbations of integral operators, Cauchy-type integrals, maximal operators

S. A. Vinogradov


Abstract: In this paper simple proofs are given for several propositions about continuity of singular integral operators with Cauchy kernel. Some of these propositions turn out to be consequences of more general tests for continuity of operators of the form
$$ (A^hf)(t)\overset{\operatorname{del}}=\int^b_aa(s,t)h(s,t)f(s)ds\quad (t\in[a,b]) $$
under the condition that $A^1$ is a continuous operator (in a given pair of spaces). As the functions $a$ and $h$ one considers, as a rule, functions of the form $1/(e^{it}-e^{is})$ and $\Phi\biggl(\dfrac{\omega(t)-\omega(s)}{e^{it}-e^{is}}\biggr)$ respectively.

UDC: 517.948:513.8, 519.4


 English version:
Journal of Soviet Mathematics, 1986, 34:6, 2033–2039

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024