This article is cited in
2 papers
How good can a nonhereditary family be?
L. N. Dovbysh,
N. K. Nikol'skii,
V. N. Sudakov
Abstract:
A family of vectors of
$\mathfrak X=\{x_n\}_{n\geqslant1}$ a Hilbert space
$H$ is said to be hereditarily complete, if it has biorthogonal
$\mathfrak X'$ (minimally) and any element of
$H$ can be reconstructed from its Fourier series:
$x\in V((x,x'_n)x_n:n\geqslant1)$. In this paper we describe all pairs of spaces
$A$,
$B$, which contain minimal mutually biorthogonal and complete families
$\mathfrak X,\mathfrak X'$ (
$V(\mathfrak X)=A$,
$V(\mathfrak X')=B$ and $\sup_{n\geqslant1}\|x_n\|\cdot\|x'_n\|<+\infty$: for this it is necessary and sufficient that the operator
$P_AP_BP_A$ not be completely continuous. This assertion allows one to prove that: 1) if
$d_n>0$,
$\sum_{n\geqslant}d_n^2==\infty$, then there exist an orthonormal basis
$\{\varphi_n\}_{n\geqslant1}$ and complete but not hereditarily complete biorthogonal families
$\mathfrak X$,
$\mathfrak X'$ in
$H$, such that
$\|x_n-\varphi_n\|\leqslant d_n$,
$\|x'_n-\varphi_n\|\leqslant d_n(n\geqslant1)$ 2) if
$\omega(n)>0$,
$\lim_n\omega(n)=+\infty$, then there exist families of the type described in the preceding assertion for which $|\mathscr P_\sigma|\leqslant c\omega(\operatorname{card}\sigma)$, where
$\sigma$ is any finite set of natural numbers and $\mathscr P_\sigma x=\sum_{n\in\sigma}(x,x'_n)x_n$ is the spectral projector corresponding to it. One of the auxiliary assertions is the description of all real collections
$\alpha=(\alpha_k)^n_{k=1}$, representable in the form
$\alpha_k=q(f_k)$,
$1\leqslant k\leqslant n$, where
$q$ is a Hilbert seminorm defined in the Euclidean space
$E^n$,
$\{f_k\}^n_{k=1}$ is a suitable orthonormal basis. This set is the convex hull of all permutations of the eigenvalues
$(\lambda_1,\dots,\lambda_n)$ of the seminorm
$q$.
UDC:
513.88