RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1977 Volume 67, Pages 201–222 (Mi znsl2018)

Application of fields formed by the Gauss periods to the investigation of cyclic diophantine equations

A. V. Tolstikov


Abstract: The question of the nonsolvability of the equation
$$ Z^*_l(x_0,x_1,\dots,x_t)=\prod^{l-1}_{i=0}\sum^t_{j=0}x_j\zeta^{ij}=Dl^wx^l,\quad (D\varphi(D)z,l)=1 $$
in rational integers $x_0,x_1,\dots,x_t,z$ satisfying certain additional conditions is investigated. Two cases are considered: 1) $l$ is a regular prime number and $0<t<l-1$; 2) $l$ is an irregular prime number, $l=fe+1$ ($f$ is prime), $l>c_0(f,t)$ and $l$ does not divide the Bernoulli numbers $B_{fk+1}$ ($k=1,3,\dots,e-1$), $B_{2fk}$ ($k=1,2,\dots,\frac{e}{2}-1$).

UDC: 511


 English version:
Journal of Soviet Mathematics, 1981, 16:1, 897–912

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025