RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1976 Volume 59, Pages 60–80 (Mi znsl2085)

Maximum of the fourth diameter in the family of continua with prescribed capacity

G. V. Kuz'mina


Abstract: We obtain a complete solution of the problem of the maximum of the fourth diameter
$$ d_4(E)=\biggl\{\max_{z_k,z_r\in E}\prod_{1\leqslant k\leqslant l\leqslant4}|z_k-z_l|\biggr\}^{1/6} $$
in the family of continua with capacity 1. Let $E(0,e^{i\alpha},e^{-i\alpha})$, $0<\alpha<\pi/2$, be a continuum of minimum capacity containing the points $0$, $e^{i\alpha}$, $e^{-i\alpha}$; $H(\alpha)=\operatorname{cap}E(0,e^{i\alpha},e^{-i\alpha})$. Let $c(\alpha)$ be the common point of three analytic arcs which form $E(0,e^{i\alpha},e^{-i\alpha})$. One shows that the indicated maximum is realized by the continuum $\mathscr E=\{z:H(\alpha_0)z^2\in E(0,e^{i\alpha},e^{-i\alpha})\}$ where $\alpha_0$, $0<\alpha_0<\pi/2$, is a solution of the equation $c(\alpha)=\frac13\cos\alpha$. Any other extremal continuum of the gives problem is an image of $\mathscr E$ under the mapping $z\to e^{i\gamma}z+C$ ($\gamma$ is a real and $C$ is a complex constant). One finds the value of the required maximum. The paper contains a brief exposition of the proof of this result.

UDC: 517.54


 English version:
Journal of Soviet Mathematics, 1978, 10:2, 241–256

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025