Abstract:
One refines an estimate of B. F. Skubenko (Tr. Mat. Inst. Akad. Nauk 148, 218–224 (1978)). Let $\Lambda$ be a point lattice of determinant $d(\Lambda)$ in the $n$-dimensional Euclidean space $\mathbf R^n$, and let $L\in\mathbf R^n$. We consider the nonhomogeneous
$$
M=M(\Lambda,L)=\inf_{(z_1,\dots,z_n)\in\Lambda+L}\prod^n_{i=1}|z_i|.
$$
One proves that there exists an effectively computable constant $n_0$ such that if $n\geqslant n_0$, then
$$
M<2^{-\frac n2}e^{20}n^{-\frac37}\log^{\frac47}nd(\Lambda).
$$