RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1979 Volume 82, Pages 88–94 (Mi znsl2093)

This article is cited in 1 paper

A refinement of an estimate of the arithmetic minimum of the product of nonhomogeneous linear forms (regarding Minkowski's nonhomogeneous conjecture)

Kh. N. Narzullaev, B. F. Skubenko


Abstract: One refines an estimate of B. F. Skubenko (Tr. Mat. Inst. Akad. Nauk 148, 218–224 (1978)). Let $\Lambda$ be a point lattice of determinant $d(\Lambda)$ in the $n$-dimensional Euclidean space $\mathbf R^n$, and let $L\in\mathbf R^n$. We consider the nonhomogeneous
$$ M=M(\Lambda,L)=\inf_{(z_1,\dots,z_n)\in\Lambda+L}\prod^n_{i=1}|z_i|. $$
One proves that there exists an effectively computable constant $n_0$ such that if $n\geqslant n_0$, then
$$ M<2^{-\frac n2}e^{20}n^{-\frac37}\log^{\frac47}nd(\Lambda). $$


UDC: 511.9


 English version:
Journal of Soviet Mathematics, 1982, 18:6, 913–918

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025