RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1997 Volume 236, Pages 183–191 (Mi znsl21)

This article is cited in 2 papers

Trigonometrical algebras

P. A. Terekhin

Saratov State University named after N. G. Chernyshevsky

Abstract: Euclidean $n$-dimensional spaces that have an analog of a vector product, i.e., a bilinear binary operation satisfying the identity $|x\cdot y|^2+(x,y)^2=|x|^2\cdot|y|^2$ ($(\cdot,\cdot)$ is a scalar product). It is clarified for which $n$ such a product exists.

UDC: 512.86

Received: 21.11.1996


 English version:
Journal of Mathematical Sciences (New York), 1999, 95:2, 2156–2160

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025