RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1979 Volume 83, Pages 73–82 (Mi znsl2105)

Generalization of istratescu's theorem on contractive mappings in metric spaces

M. L. Katkov


Abstract: In this paper we consider mappings $T\colon X\to X$ of metric spaces, satisfying the condition:
$$ d(T_x,T_y)\leqslant\omega(\alpha_1d(x,y)+\alpha_2d(x,Tx)+\alpha_3d(y,Ty)+\alpha_4d(x,Ty)+\alpha_5d(y,Tx), $$
where $\omega$ is some right semicontinuous function. We prove that if $\omega$ is a nondecreasing function, $\omega(r)<r$ for $r>0$, $r-\omega(r)\to\infty$ as $r\to\infty$, $\sum^5_{i=1}\alpha_i(x,y)\leqslant1$, then the map $T$ has a fixed point $\xi$ and $\lim_{n\to\infty}T^nx=\xi$ for any point $x\in X$. Interesting examples are given.

UDC: 513.83


 English version:
Journal of Soviet Mathematics, 1982, 19:3, 1258–1265

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024