RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1979 Volume 83, Pages 93–100 (Mi znsl2107)

Nonexistence of locally flat approximations in codimension two

M. A. Shtan'ko


Abstract: In this paper we prove that for any $n\geqslant6$ there exists a closed, piecewise-linearly imbedded in $E^n$ manifold $M_{pL}^{n-2}$, not admitting locally flat approximations. This manifold can be assumed, here, to be homotopically not equivalent to a smooth one if $n\geqslant10$. We also prove that for any $n\geqslant7$ there exists a closed topological manifold $M^{n-2}_{\mathrm{TOP}}\subset E^n$ not admitting locally flat approximation. This manifold can be assumed to be homotopically not equivalent with a piecewise-linear one.

UDC: 513.835


 English version:
Journal of Soviet Mathematics, 1982, 19:3, 1273–1278

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024