RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2008 Volume 357, Pages 5–21 (Mi znsl2115)

This article is cited in 4 papers

A bound for the representability of large numbers by ternary quadratic forms and nonhomogeneous Waring equations

E. P. Golubeva

St. Petersburg State University of Telecommunications

Abstract: It is proved that equation $n=x^2+y^2+6pz^2$ ($p$ is a large fixed prime) is solvable if natural congruencial conditions are satisfied and $nm^{12}>p^{21}$.
As a consequence the solvability of the equation $n=x^2+y^2+u^3+v^3+z^4+w^{16}+t^{4k+1}$ is proved for all sufficiently large $n$. Bibl. – 13 titles.

UDC: 511.3

Received: 09.09.2008


 English version:
Journal of Mathematical Sciences (New York), 2009, 157:4, 543–552

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024