RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2008 Volume 357, Pages 33–45 (Mi znsl2117)

This article is cited in 2 papers

A distortion theorem for the class of typically real functions

E. G. Goluzina

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: The author's investigations in the well known class $T$ of typically real functions $f(z)$ in the disk $U=\{z:|z|<1\}$ are prolonged. The region of values of the system $\{f(z_0),f(z_0),f(r_1),f(r_2),\dots,f(r_n)\}$ in the class $T$ is investigated. Here $z_0\in U$, $\operatorname{Im}z_0\ne0$, $0<r_j<1$ for $j=1,\dots,n$, $n\ge2$. As a corollary, the region of values of $f'(z_0)$ in the class of functions $f\in T$ with fixed values $f(z_0)$ and $f(r_j)$ $(j=1,\dots,n)$ is determined. In the proof a criterion of decision power moment problem is used. Bibl. – 10 titles.

UDC: 517.54

Received: 11.09.2008


 English version:
Journal of Mathematical Sciences (New York), 2009, 157:4, 560–567

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024