RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2008 Volume 359, Pages 31–35 (Mi znsl2130)

Gaussian elimination and the ranks of the components in the Cartesian decomposition of a matrix

Kh. D. Ikramov

M. V. Lomonosov Moscow State University

Abstract: Let $A=B+iC$, where $B=B^*$, $C=C^*$, be the Cartesian decomposition of an $n\times n$ matrix $A$, and let the component $B$ (or $C$) have rank $r<n$. It is shown that for a nonsingular $A$, the inverse $A^{-1}$ has an analogous property. This implies that all the (correctly defined) Schur complements in $A$ have Cartesian decompositions with component $B$ (or $C$) of rank $\le r$. The active submatrix at each step of the Gaussian elimination applied to $A$ is the Schur complement of the appropriate leading principal submatrix. Bibl. – 2 titles.

UDC: 512

Received: 11.02.2008


 English version:
Journal of Mathematical Sciences (New York), 2009, 157:5, 689–691

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024