RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2008 Volume 359, Pages 45–51 (Mi znsl2133)

This article is cited in 13 papers

On the product of two skew-Hamiltonian matrices or two skew-symmetric matrices

Kh. D. Ikramova, H. Fassbenderb

a M. V. Lomonosov Moscow State University
b Technische Universität Braunschweig, Institut Computational Mathematics

Abstract: We show that the product $C$ of two skew-Hamiltonian matrices obeys the Stenzel conditions. If at least one of the factors is nonsingular, then the Stenzel conditions amount to the requirement that every elementary divisor for a nonzero eigenvalue of $C$ occurs an even number of times. The same properties are valid for the product of two skew-pseudosymmetric matrices. We observe that the method proposed by Van Loan for computing the eigenvalues of real Hamiltonian and skew-Hamiltonian matrices can be extended to complex skew-Hamiltonian matrices. Finally, we show that the computation of the eigenvalues of a product of two skew-symmetric matrices can be reduced to computing the eigenvalues of a similar skew-Hamiltonian matrix. Bibl. – 8 titles.

UDC: 512

Received: 06.03.2008


 English version:
Journal of Mathematical Sciences (New York), 2009, 157:5, 697–700

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024