RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2008 Volume 359, Pages 208–215 (Mi znsl2141)

An error bound of the Ritz method for a singular second-order differential equation

M. N. Yakovlev

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: The paper presents an error bound of the Ritz method for the problem of minimizing the functional
$$ J(u)=\int^1_0[u'(t)]^2\,dt+\int^1_0q(t)u^2(t)\,dt-2\int_0^1f(t)u(t)\,dt $$
in the space $\overset\circ{W^1_2}(0,1)$ in the case where the standard assumption on the continuity of $q(t)$ is replaced by the condition $q^2(t)t(1-t)\in L(0,1)$. In the case where $q(t)$ is continuous, the new bound is sharper than the known one. Bibl. – 5 titles.

UDC: 519

Received: 20.10.2008


 English version:
Journal of Mathematical Sciences (New York), 2009, 157:5, 784–788

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025