RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2008 Volume 358, Pages 54–76 (Mi znsl2145)

This article is cited in 1 paper

Time hierarchies for cryptographic function inversion with advice

E. A. Hirscha, D. Yu. Grigor'evb, K. V. Pervyshevcd

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Institute of Mathematical Research of Rennes
c Saint-Petersburg State University
d University of California, San Diego, Department of Computer Science and Engineering

Abstract: We prove a time hierarchy theorem for inverting functions computable in a slightly non-uniform polynomial time. In particular, we prove that if there is a strongly one-way function then for any $k$ and for any polynomial $p$, there is a function $f$ computable in linear time with one bit of advice such that there is a polynomial-time probabilistic adversary that inverts $f$ with probability $\ge1/p(n)$ on infinitely many lengths of input while all probabilistic $O(n^k)$-time adversaries with logarithmic advice invert $f$ with probability less than $1/p(n)$ on almost all lengths of input.
We also prove a similar theorem in the worst-case setting, i.e., if $\mathbf P\neq\mathbf{NP}$, then for every $l>k\ge1$
$$ (\mathbf{DTime}[n^k]\cap\mathbf{NTime}[n])/1\subsetneq(\mathbf{DTime}[n^l]\cap\mathbf{NTime}[n])/1. $$
Bibl. – 16 titles.

UDC: 510.52

Received: 11.05.2007


 English version:
Journal of Mathematical Sciences (New York), 2009, 158:5, 633–644

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024