RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2008 Volume 358, Pages 189–198 (Mi znsl2151)

Borel reducibility as an additive property of domains

V. G. Kanovei, V. A. Lyubetskii

A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences

Abstract: We prove that under certain requirements if $\mathrm E$ and $\mathrm F$ are Borel equivalence relations, $X=\bigcup_nX_n$ is a countable union of Borel sets, and $\mathrm E\upharpoonright X_n$ is Borel reducible to $\mathrm F$ for all $n$ then $\mathrm E\upharpoonright X$ is Borel reducible to $\mathrm F$. Thus the property of Borel reducibility to $\mathrm F$ is countably additive as a property of domains. Bibl. – 18 titles.

UDC: 510.225

Received: 10.04.2007


 English version:
Journal of Mathematical Sciences (New York), 2009, 158:5, 708–712

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024