RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2008 Volume 360, Pages 153–161 (Mi znsl2163)

This article is cited in 3 papers

On the coincidence of the canonical embeddings of a metric space into a Banach space

P. B. Zatitskii

Saint-Petersburg State University

Abstract: Recall the two classical canonical isometric embeddings of a finite metric space $X$ into a Banach space. That is, the Hausdorff–Kuratowsky embedding $x\to\rho(x,\cdot)$ into the space of continuous functions on $X$ with the max-norm, and the Kantorovich–Rubinshtein embedding $x\to\delta_x$ (where $\delta_x$ is the $\delta$-measure concentrated at $x$) with the transportation norm. We prove that these embeddings are not equivalent if $|X|>4$. Bibl. – 2 titles.

UDC: 515.124.4

Received: 17.11.2008


 English version:
Journal of Mathematical Sciences (New York), 2009, 158:6, 853–857

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025