RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2008 Volume 360, Pages 162–179 (Mi znsl2164)

This article is cited in 8 papers

The five-vertex model and boxed plane partitions

V. S. Kapitonova, A. G. Pronkob

a State Technological Institute of St. Petersburg
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Boxed plane partitions are considered in terms of the five-vertex model on a finite lattice with fixed boundary conditions. Assuming that all weights of the model have the same value, the one-point correlation function describing the probability of having a given state on an arbitrary horizontal edge of the lattice is calculated. This is equivalent to the enumeration of boxed plane partitions that correspond to rhombus tilings of a hexagon with one fixed rhombus of a particular type. The solution of the problem is given for the case of a box of generic size. Bibl. – 27 titles.

UDC: 517.958

Received: 10.12.2008


 English version:
Journal of Mathematical Sciences (New York), 2009, 158:6, 858–867

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024