Abstract:
The paper presents a new monotonicity property of the Perron root of a nonnegative matrix. It is shown that this new property implies known monotonicity properties and also the Chistyakov two-sided bounds for the Peroon root of a block-partitioned nonnegative matrix. Moreover, based on the monotonicity property suggested, the equality cases in Chistyakov's theorem are analyzed. Applications to bounding above the spectral radius of a complex matrix are presented.