RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1997 Volume 236, Pages 192–196 (Mi znsl22)

On some 2-extension of the field $\mathbb Q$ of rational numbers

V. M. Tsvetkov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: It is proved that the field $\mathbb Q$ of rational numbers has one and only one normal 2-extension $\mathbb Q_{(2,\infty)}/\mathbb Q$ with the groupe isomorphic to $Z_2*\mathbb Z/2$. If $\Omega$ the maximal subfield of a real-closed field not contain in $\sqrt 2$, then the algebraic closure $\overline\Omega$ is isomorphic to the field $\Omega\underset{\mathbb Q}{\otimes}\mathbb Q_{(2,\infty)}$.

UDC: 512.4

Received: 26.05.1997


 English version:
Journal of Mathematical Sciences (New York), 1999, 95:2, 2161–2163

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025