RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2006 Volume 334, Pages 30–56 (Mi znsl221)

This article is cited in 3 papers

Joint bounds for the Perron roots of nonnegative matrices with applications

Yu. A. Alpina, L. Yu. Kolotilinab, N. N. Korneevaa

a Kazan State University
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Given a finite set $\{A^{(x)}\}_{x\in X}$ of nonnegative matrices, we derive joint upper and lower bounds for the row sums of the matrices $D^{-1}A^{(x)}D$, $x\in X$, where $D$ is a specially chosen nonsingular diagonal matrix. These bounds, depending only on the sparsity patterns of the matrices $A^{(x)}$ and their row sums, are used to obtain joint two-sided bounds for the Perron roots of given nonnegative matrices, joint upper bounds for the spectral radii of given complex matrices, bounds for the joint and lower spectral radii of a matrix set, and conditions sufficient for all convex combinations of given matrices to be Schur stable.

UDC: 512.643

Received: 29.05.2006


 English version:
Journal of Mathematical Sciences (New York), 2007, 141:6, 1586–1600

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024