RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2006 Volume 334, Pages 233–245 (Mi znsl235)

This article is cited in 3 papers

The first boundary-value problem for a singular nonlinear ordinary differential equation of fourth order

M. N. Yakovlev

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: The solvability of the boundary-value problem
\begin{gather*} u^{(4)}-(p_1(t)u')'-(p_2(t)[u']^{2k+1})'+p_0(t)u+f_0(t)\varphi(u)+f_1(t)u^{2m+1}=f(t), \enskip 0<t<1, \\ u(0)=u'(0)=u(1)=u'(1)=0, \end{gather*}
in the space $H^2_0(0,1)$ is proved under the following assumptions: $p_0(t)t^3(1-t)^3\in L(0,1)$, $p_1(t)t(1-t)\in L(0,1)$, $f(t)t^{3/2}(1-t)^{3/2}\in L(0,1)$, $0\le p_2(t)[t(1-t)]^{k+1}\in L(0,1)$, $0\le f_0(t)[t(1-t)]^{3/2}\in L(0,1)$, $0\le f_1(t)[t(1-t)]^{3m+3}\in L(0,1)$, $\varphi(u)u\ge-c|u|$, $c>0$,
$$ 1-\int^1_0p^-_1(t)t(1-t)dt-\frac13\int^1_0p^-_0(t)t^3(1-t)^3\,dt>0. $$


UDC: 512

Received: 07.06.2006


 English version:
Journal of Mathematical Sciences (New York), 2007, 141:6, 1702–1709

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025