Abstract:
The solvability of the boundary-value problem
\begin{gather*}
u^{(4)}-(p_1(t)u')'-(p_2(t)[u']^{2k+1})'+p_0(t)u+f_0(t)\varphi(u)+f_1(t)u^{2m+1}=f(t), \enskip 0<t<1,
\\
u(0)=u'(0)=u(1)=u'(1)=0,
\end{gather*}
in the space $H^2_0(0,1)$ is proved under the following assumptions:
$p_0(t)t^3(1-t)^3\in L(0,1)$, $p_1(t)t(1-t)\in L(0,1)$,
$f(t)t^{3/2}(1-t)^{3/2}\in L(0,1)$, $0\le p_2(t)[t(1-t)]^{k+1}\in L(0,1)$,
$0\le f_0(t)[t(1-t)]^{3/2}\in L(0,1)$, $0\le f_1(t)[t(1-t)]^{3m+3}\in L(0,1)$,
$\varphi(u)u\ge-c|u|$, $c>0$,
$$
1-\int^1_0p^-_1(t)t(1-t)dt-\frac13\int^1_0p^-_0(t)t^3(1-t)^3\,dt>0.
$$