RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2006 Volume 333, Pages 5–16 (Mi znsl237)

Strong factorization of operators defined on subspaces of analytic functions in lattices

D. S. Anisimova, S. V. Kislyakovb

a Saint-Petersburg State University
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: It is shown that for every 2-concave Banach lattice $X$ of measurable fuctions on the circle, the quotient space $X/X_A$ has cotype 2. Here $X_A$ denotes the subclass of $X$ consisting of the boundary values of analytic functions. It is also shown that, under slight additional assumptions, a $p$-concave operator defined on $X_A$ factors through $L^p_A=H^p$ and extends to $X$, provided that $X$ is 2-convex.

UDC: 517.5

Received: 28.04.2006


 English version:
Journal of Mathematical Sciences (New York), 2007, 141:5, 1511–1516

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024