RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2006 Volume 333, Pages 43–53 (Mi znsl240)

Characterizations of Hardy–Orlicz and Bergman–Orlicz spaces

E. Doubtsov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Let $\widetilde\nabla$ è $\tau$ denote the invariant gradient and invariant measure on the unit ball $B$ of $\mathbb C^n$, respectively. Assume that $f$ is a holomorphic function on $B$ and $\varphi\in C^2 ({\mathbb R})$ is a nonnegative nondecreasing convex function. Then $f$ is in the Hardy–Orlicz space $H_\varphi(B)$ if and only if
$$ \int_B\varphi''(\log|f(z)|)\frac{|\widetilde\nabla f(z)|^2}{|f(z)|^2}(1-|z|^2)^n\,d\tau(z)<\infty. $$
Analogous characterizations of Bergman–Orlicz spaces are obtained.

UDC: 517.5

Received: 07.05.2006


 English version:
Journal of Mathematical Sciences (New York), 2007, 141:5, 1531–1537

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024