RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2006 Volume 333, Pages 54–61 (Mi znsl241)

Commutators in model spaces

V. V. Kapustin

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Let $\theta$ be an inner function, let $K_\theta=H^2\ominus\theta H^2$, and let $S_\theta\colon K_\theta\to K_\theta$ be defined by the formula $S_\theta f=P_\theta zf$, $f\in K_\theta$, where $P_\theta$ is the orthogonal projection of $H^2$ onto $K_\theta$. Consider the set $A$ of all trace class operators $L\colon K_\theta\to K_\theta$, $L=\sum(\cdot,u_n)v_n$, $\sum\|u_n\|\|v_n\|<\infty$ $(u_n,v_n\in K_\theta)$, such that $\sum\bar u_nv_n\in H^1_0$. It is shown that the trace class commutators of the form $XS_\theta-S_\theta X$ (where $X$ is a bounded linear operator on $K_\theta$) are dense in $A$ in the trace class norm.

UDC: 517.5

Received: 27.07.2006


 English version:
Journal of Mathematical Sciences (New York), 2007, 141:5, 1538–1542

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024