RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1972 Volume 32, Pages 77–84 (Mi znsl2567)

This article is cited in 2 papers

Arithmetical representations of recursively enumerable sets with a small number of quantifiers

Yu. V. Matiyasevich


Abstract: It is shown that every recursively enumerable set $M$ of positive integers can be represented in each of the following forms:
\begin{align} a\in M&\Leftrightarrow\exists_p\exists_s\&_{i=1}^\pi\exists_v[A_i(a,p,s,v)>0],\notag\\ a\in M&\Leftrightarrow\exists_s\&_{i=1}^\pi\exists_p\exists_v[B_i(a,p,s,v)>0],\notag\\ a\in M&\Leftrightarrow\exists_t\forall y_{\leq t} \exists_v\exists_w[C(a,t,y,v,w)=0].\notag \end{align}
Here $\pi$ is a particular integer, $A_i$, $B_i$, $C$ are polynomials with integer coefficients, $a$, $p$, $s$, $t$, $v$, $w$, $y$ ware variables for positive integers.



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024