Abstract:
It is proved that $\operatorname{dim}\operatorname{Ker}(T-\lambda I)^n=\operatorname{dim}\operatorname{Ker}K_n(\lambda)$, where $T$ is a contraction of the Hilbert space,
$$
K_n(\lambda)
=\begin{pmatrix}
\theta^{*}(\bar\lambda)&0&\dots&0\\
\frac1{1!}\theta^{*(1)}(\bar\lambda)&\theta^{*}(\bar\lambda)&\dots&0\\
\frac1{(n-1)!}\theta^{*(n-1)}(\bar\lambda)&\frac1{(n-2)!}\theta^{*(n-2)}(\bar\lambda)&\dots&
\theta^{*}(\bar\lambda)
\end{pmatrix},
$$ $\theta$ – the characteristic function of the operator collegation generated by the contraction $T$.