RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1974 Volume 47, Pages 155–158 (Mi znsl2772)

This article is cited in 1 paper

Short communications

Root lineals and characteristic functions of contractions

M. S. Brodskii, Ya. S. Shvartsman


Abstract: It is proved that $\operatorname{dim}\operatorname{Ker}(T-\lambda I)^n=\operatorname{dim}\operatorname{Ker}K_n(\lambda)$, where $T$ is a contraction of the Hilbert space,
$$ K_n(\lambda) =\begin{pmatrix} \theta^{*}(\bar\lambda)&0&\dots&0\\ \frac1{1!}\theta^{*(1)}(\bar\lambda)&\theta^{*}(\bar\lambda)&\dots&0\\ \frac1{(n-1)!}\theta^{*(n-1)}(\bar\lambda)&\frac1{(n-2)!}\theta^{*(n-2)}(\bar\lambda)&\dots& \theta^{*}(\bar\lambda) \end{pmatrix}, $$
$\theta$ – the characteristic function of the operator collegation generated by the contraction $T$.

UDC: 517.948:513.8+519.4



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024