RUS
ENG
Full version
JOURNALS
// Zapiski Nauchnykh Seminarov POMI
// Archive
Zap. Nauchn. Sem. POMI,
2006
Volume 330,
Pages
155–157
(Mi znsl283)
This article is cited in
2
papers
A combinatorial proof of Euler–Fermat's theorem on presentation of primes of the form
$p=8k+3$
by the quadratic form
$x^2+2y^2$
A. I. Generalov
Saint-Petersburg State University
Abstract:
An elementary and extremely short proof of the theorem on presentation of primes of the form
$p=8k+3$
by the quadratic form
$x^2+2y^2$
with integers
$x,y$
.
UDC:
512.5
Received:
10.12.2005
Fulltext:
PDF file (110 kB)
References
Cited by
English version:
Journal of Mathematical Sciences (New York), 2007,
140
:5,
690–691
Bibliographic databases:
©
Steklov Math. Inst. of RAS
, 2024