RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2006 Volume 330, Pages 155–157 (Mi znsl283)

This article is cited in 2 papers

A combinatorial proof of Euler–Fermat's theorem on presentation of primes of the form $p=8k+3$ by the quadratic form $x^2+2y^2$

A. I. Generalov

Saint-Petersburg State University

Abstract: An elementary and extremely short proof of the theorem on presentation of primes of the form $p=8k+3$ by the quadratic form $x^2+2y^2$ with integers $x,y$.

UDC: 512.5

Received: 10.12.2005


 English version:
Journal of Mathematical Sciences (New York), 2007, 140:5, 690–691

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024