RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1976 Volume 55, Pages 175–184 (Mi znsl2848)

This article is cited in 4 papers

Asymptotic behavior of statistical estimates of the shift parameter for samples with unbounded density

I. A. Ibragimov, R. Z. Khas'minskii


Abstract: This paper is a continuation of author's paper [I]. Like [I] we consider here a sample $(x_1,\dots,x_n)$ with common density $f(x-\Theta)$ depending on unknown parameter $\Theta$. It is supposed that $f$ is sufficiently smooth exept the finite set of points of singularity of the form (1.1).
The main result asserts that for Bayesian estimates $\hat{t}_n$ random variables $n^{1/1+\alpha}(\hat{t}_n-\Theta)$ has a proper limit distribution where $\alpha$ is from (1.1).

UDC: 519.21


 English version:
Journal of Soviet Mathematics, 1981, 16:2, 1035–1041

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024