RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2005 Volume 329, Pages 5–13 (Mi znsl291)

This article is cited in 7 papers

Remarks on Chebyshev coordinates

Yu. D. Buragoa, S. V. Ivanova, S. G. Malevb

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Saint-Petersburg State University

Abstract: Some results on the existence of global Chebyshev coordinates on complete Riemannian manifolds or, more generally, on Aleksandrov surfaces are proved. For instance, if both the positive part and the negative part of the integral curvature are less than $2\pi$, then there exist global Chebyshev coordinates on $M$. Such coordinates help one to get bi-Lipschitz maps between surfaces.

UDC: 514

Received: 20.12.2005


 English version:
Journal of Mathematical Sciences (New York), 2007, 140:4, 497–501

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024