RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2005 Volume 329, Pages 28–55 (Mi znsl293)

This article is cited in 8 papers

An isoperimetric problem for tetrahedra

V. A. Zalgaller

Weizmann Institute of Science

Abstract: It is proved that a regular tetrahedron has the maximal possible surface area among tetrahedra with unit geodesic diameter of surface. An independent proof of O'Rourk–Schevon's theorem about polar points on a convex polyhedron is given. A. D. Aleksandrov's general problem on the area of a convex surface with fixed geodesic diameter is dicussed.

UDC: 514.113

Received: 23.11.2005


 English version:
Journal of Mathematical Sciences (New York), 2007, 140:4, 511–527

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025