RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1979 Volume 85, Pages 75–93 (Mi znsl2953)

This article is cited in 31 papers

On a hitting probability of Gaussian random vector into a small ball in a Hilbert space

I. A. Ibragimov


Abstract: Let $\xi$ be a Gaussian random vector taking its value in a Hilbert space $H$. Denote by $\theta(a,z)$ the ball in $H$ with center $a$ and radius $z$. Let $I(a,z)=\Prob\{\xi\in\theta(a,z)\}$, $z\to0$. We give some asymptotic formulas for $I(a,z)$ valid when $z\to0$.

UDC: 519.62


 English version:
Journal of Soviet Mathematics, 1982, 20:3, 2164–2175

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024