RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2005 Volume 329, Pages 67–78 (Mi znsl296)

This article is cited in 6 papers

Asphericity of shadows of a convex body

V. V. Makeev

Saint-Petersburg State University

Abstract: A shadow is a parallel projection $F$ of a body $K$ to a plane. $F$ is $\epsilon$-aspheric if the boundary $\partial F$ lies in a circular ring with center at $O$ and ratio of radii equal to $1+\epsilon$. $F$ is $\epsilon$-aspheric for a part of $\alpha$ if the same is true for the part of $\partial F$ lying inside an angle of $2\alpha\pi$ with vertex at $O$ (or within the union of two vertical angles of $\alpha\pi$ if $K$ is centrally symmetric). It is proved that each convex body $K\subset\mathbb R^3$ has a $(\sqrt 2-1)$-aspheric shadow and a shadow $(\sec\pi/5-1)$-aspheric for a part of 4/5. If $K$ is centrally symmetric, then $K$ has a $(2/\sqrt3-1)$-aspheric shadow and a shadow $(\sec\pi/7-1)$-aspheric for a part of 6/7.

UDC: 514.172

Received: 01.03.2005


 English version:
Journal of Mathematical Sciences (New York), 2007, 140:4, 535–541

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025