RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1979 Volume 87, Pages 125–142 (Mi znsl2976)

This article is cited in 1 paper

On continuity of queueing systems with refusals

L. Szeidl


Abstract: In this paper is considered the queueing system of type $G|G|m|0$.
It is introduced the series of random variables $Y=\{Y_n,n=0,1,2,\dots\}$ (where $Y_n$ is the number of the occupied apparatus at the moment of the call with number $n$) connected with the defining series $X=\{X_n,n=0,1,2,\dots\}$ by the rule (I) of this paper. This rule determines the mapping $F\colon\mathfrak X\to Y$, where $\mathfrak X$ is a set of the defining series $X$ and $Y$ is the set of the corresponding series $Y$. By the method of V. M. Zolotarev it is studied the continuity of mapping $F$ with choosen metrics in $\mathfrak X$ and $Y$. Quantitative estimations of general type are obtained. If is proved that if $m\to\infty$ then the estimations will be transformed into those of the corresponding case $G|G|\infty$ of paper [2].

UDC: 519.2


 English version:
Journal of Soviet Mathematics, 1981, 17:6, 2307–2320

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025