RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1979 Volume 87, Pages 143–158 (Mi znsl2977)

This article is cited in 6 papers

On one problem concerned with the arithmetic of probability measures on spheres

I. P. Trukhina


Abstract: Let $\mathscr P_\nu$ be a topological semigroup of sequences $t=\{t_n\}$ of the form (I) under pointwise multiplication and the topology of pointwise convergence. For $\nu=(n-2)/2$, $n=3,4,\dots$ the semigroup $\mathscr P_\nu$ is isomorphic to the convolution semigroup of probability measures on $\mathrm{SO}(n)$ bi-invariant under the action of $\mathrm{SO}(n-1$). Some sufficient conditions for an element $t\in\mathscr P_\nu$ be indecomposable are given. It is showed that the set of indecomposable elements of $\mathscr P_\nu$ is dense in $\mathscr P_\nu$. It is proved that the set of elements of $\mathscr P_\nu$ without indecomposable factors consists of the elements $v=\{P_n^\nu(0)\}$ and $W(c)=\{W_n\}$, $W_{2k}=1$, $W_{2k+1}=c$, $c\in[-1,1]$ ($k=0,1,2,\dots$). This is the solution of one problem posed by J. Lamperti in 1968.

UDC: 519.2


 English version:
Journal of Soviet Mathematics, 1981, 17:6, 2321–2333

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024