RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2005 Volume 329, Pages 159–194 (Mi znsl303)

This article is cited in 3 papers

Mappings of the sphere to a simply connected space

S. S. Podkorytov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Fix an $m\in\mathbb N$, $m\ge2$. Let $Y$ be a simply connected pointed CW-complex, and let $B$ be a finite set of continuous mappings $a\colon S^m\to Y$ respecting the marked points. Let $\Gamma(a)\subset S^m\times Y$ be the graph of $a$, and let $[a]\in\pi_m(Y)$ be the homotopy class of $a$. Then for some $r\in\mathbb N$ depending on $m$ only, there exist a finite set $E\subset S^m\times Y$ and a mapping $k\colon E(r)=\{\,F\subset E:|F|\le r\,\}\to\pi_m(Y)$ such that for each $a\in B$ we have
$$ [a]=\sum_{F\in E(r):F\subset\Gamma(a)}k(F). $$


UDC: 515.164

Received: 23.11.2005


 English version:
Journal of Mathematical Sciences (New York), 2007, 140:4, 589–610

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025