Abstract:
Fix an $m\in\mathbb N$, $m\ge2$. Let $Y$ be a simply connected pointed CW-complex, and let $B$ be a finite set of continuous mappings $a\colon S^m\to Y$ respecting the marked points.
Let $\Gamma(a)\subset S^m\times Y$ be the graph of $a$, and let $[a]\in\pi_m(Y)$ be the homotopy class of $a$. Then for some $r\in\mathbb N$ depending on $m$ only, there exist
a finite set $E\subset S^m\times Y$ and a mapping $k\colon E(r)=\{\,F\subset E:|F|\le r\,\}\to\pi_m(Y)$ such that for each $a\in B$ we have
$$
[a]=\sum_{F\in E(r):F\subset\Gamma(a)}k(F).
$$