RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2005 Volume 328, Pages 20–26 (Mi znsl305)

Dimensions of random recursive sets

A. G. Berlinkov

Saint-Petersburg State Electrotechnical University

Abstract: We prove a theorem that generalizes equality among packing, Hausdorff and upper and lower Mikowski dimensions for a general type of random recursive construction and apply it to the constructions with finite memory. Further we prove an upper bound on the packing dimension of certain random distribution funstions on $[0,1]$.

UDC: 519.21

Received: 07.10.2005


 English version:
Journal of Mathematical Sciences (New York), 2006, 139:3, 6506–6509

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024