RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1979 Volume 88, Pages 186–191 (Mi znsl3112)

This article is cited in 1 paper

Positive rudimentarity of the graphs of the Ackermann's and Grzegorczyk's functions

A. V. Proskurin


Abstract: The graphs of the Ackermann's functions $\lambda xyg_n(x,y)$ [3,4] and the Grzegorczyk's functions $f_n$ [2] are shown to be in the class of the positive rudimentary predicates of J. H. Bennett [1]. The latter class is included in the initial class $\mathscr E_*^0$ A. Grzegorczyk [2], thus our result strengthens that of S. V. Pakhomov [5] about the expressibility of the $f_n$'s graphs in $\mathscr E_*^0$. By a generalization of the method applied, the positive rudimentarity of the graph of the Ackerman's function $\lambda nxyg_n(x,y)$ can be proved.

UDC: 510.52


 English version:
Journal of Soviet Mathematics, 1982, 20:4, 2363–2366

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025