RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1979 Volume 92, Pages 85–102 (Mi znsl3191)

This article is cited in 2 papers

Tenson products of $p$-absolutely summing operators and right ($I_p$, $N_p$) multipliers

E. D. Gluskin, S. V. Kislyakov, O. I. Reinov


Abstract: The article investigates the question of coincidence of some classes of operators, acting from Banach spaces whose duals do not satisfy the $RN$ condition. Separable Banach spaces $JT_r$, $r\in[1,\infty)$, with the following properties are constructed: 1) For each $r$, $r\ge1$, the space $JT_r$ does not contain subspaces isomorphic to $\ell_1$ and has non-separable dual. 2) for each $p$, $p\in(1,\infty)$, and for every Banach space $Z$ $I_p(JT_r,Z)=N_p(JT_r,Z)$. 3) If $1<r<2$ then for each $p$, $p\in(1,r')$, and for every Banach space $Z$ $I_p(JT_r,Z)=N_p(JT_r,Z)$ and for each $p$, $p\ge r'$, there is a $p$-integral operator on $JT_r$ which is not quasi-$p$-nuclear. 4) If $2\le r<\infty$ then for each $p$, $p\ge1$, there is a $p$-integral operator on $JT_r$ which is not quasi-$p$-nuclear. 5) If $1\le r<2$ then $\Pi_1(JT_r,Z)=N_1Q(JT_r,Z)$ for every Banach space $Z$. The above properties of the spaces $JT_r$, are obtained by means of a theorem on tensor products of absolutely $p$-summing operators. This theorem also (as simple corollaries) some recent generalizations of Grothendieck's inequality (see, for example, [7]).

UDC: 513.881



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024