This article is cited in
2 papers
Invariant subspaces and rational approximation
M. B. Gribov,
N. K. Nikol'skii
Abstract:
Let
$T$ be a linear operator in a Banach space
$X$ with the complete set of eigen- and root-vectors. Each of formulas (1)–(3) defines a “capacity”
$\operatorname{cap}k$ of the integer valued function (the divisor)
$k$, a capacity $\operatorname{cap}E\overset{\text{def}}=\operatorname{cap}k$ of the subspace
$E\overset{\text{def}}=E^k$, generated by the root subspaces
$\operatorname{Ker}(T-\lambda I)^s$,
$0\le s<k(\lambda)$,
$\lambda\in\mathbb C$, or a capacity $\operatorname{cap}x\overset{\text{def}}=\operatorname{cap}k$ of the vector
$x$ $\operatorname{span}(T^nx:n\ge0)=E^k$.
It is proved that
$$
\varliminf E^{k_n}\overset{\text{def}}=
\{x:\lim\operatorname{dist}(x,E_{k_n})=0\}\neq X\Longleftrightarrow
\varliminf\operatorname{cap}E^{k_n}<\infty
$$
and that
$x$ is not cyclic
$(V(T^nx:n\ge0)\ne x)$, if
$x=\lim_nx_n$,
$\sup_n\operatorname{cap}x_n<\infty$.
The principal special case
$T=Z^*$,
$Z^*f\overset{\text{def}}=\frac{f-f(0)}z$ is considered in detail. In
this case root-vectors are rational functions. Bilateral estimates of capacities are given for the Hardy spaces
$H^p$,
$1\le p\le\infty$, and the spaces $C_A^{(n)}\overset{\text{def}}=\{f:f^{(n)}\in C_A\}$ (
$C_A$
being the disc-algebra). These results imply known theorems of G. Tumarkin, H. Douglas–H. Shapiro–A. Shields and of H. Hilden–L. Wallen.
UDC:
517.54