RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1979 Volume 92, Pages 274–277 (Mi znsl3206)

Short communications

The existence of a non-hereditarily complete family in an arbitrary separable Banach space

V. I. Gurarii


Abstract: It is proved that every separable Banach space $E$ contains a complete minimal family $\{x_j\}_1^\infty$ with the total biorthogonal family $\{f_j\}_1^\infty$ (in $E^*$) but not hereditarily complete (this means that the closed linear envelope of the f amily $\{f_j(z)x_j\}_1^\infty)$ does not coincide with $E$).

UDC: 513.882



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025