RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2005 Volume 327, Pages 98–114 (Mi znsl326)

This article is cited in 17 papers

On the Littlewood–Paley theorem for arbitrary intervals

S. V. Kislyakov, D. V. Parilov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: We extend the results of Rubio de Francia [1] and Bourgain [2] by showing that for arbitrary mutually nonintersecting intervals $\Delta_k\subset\mathbb Z_+$, arbitrary $p\in(0,2]$, and arbitrary trigonometric polynomials $f_k$ with $\mathrm{supp}\,\widehat f_k\subset\Delta_k$, we have
$$ \biggl\|\sum_k f_k\biggr\|_{H^p(\mathbb T)}\le a_p\biggl\|\biggl(\sum_k|f_k|^2\biggr)^{1/2}\biggr\|_{L^p(\mathbb T)}. $$
The method is a development of that by Rubio de Francia.

UDC: 813.70.72339

Received: 02.10.2005


 English version:
Journal of Mathematical Sciences (New York), 2006, 139:2, 6417–6424

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024