Abstract:
The paper deals with asymptotic behaviour of the Teoplitz determinant $D_n(f)$ for nonnegative functions $f(\lambda)$,
$\lambda\in[\pi,\pi]$
Under some conditions on function $f(\lambda)$ the asymptotic representation
$$
\ln\frac{D_n(f)}{[G(f)]^{n+1}}=0(n^{-\lambda}),\quad0<\alpha<1,
$$
is obtained.